ENERGY STAR. The simple choice for energy efficiency.

Valuing HVAC Design & Installation In the HERS Index

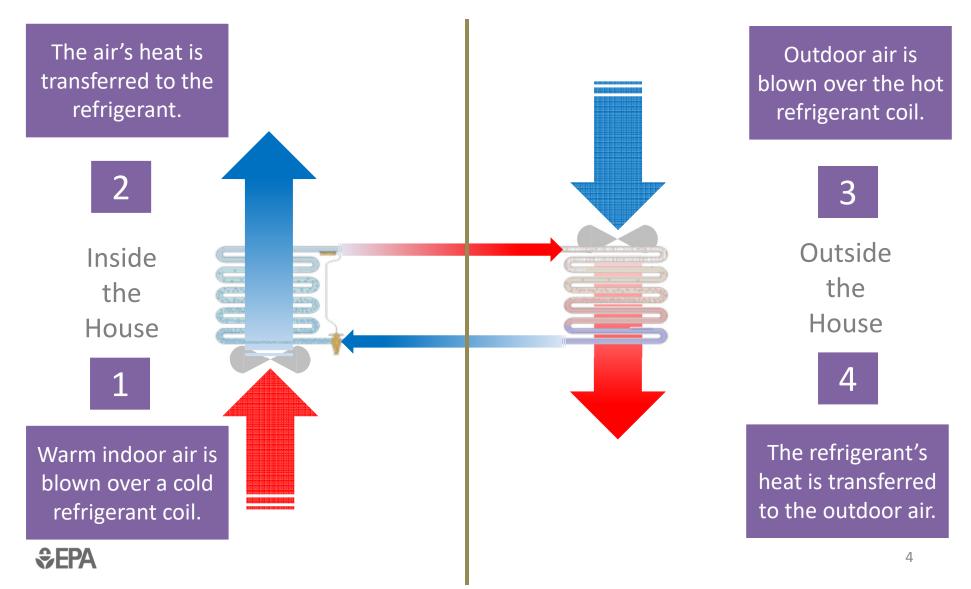
RESNET Building Performance Conference

February 27th, 2018

Introduction

3

Installation defects in HVAC systems are commonplace


- Improper airflow. •
- Incorrect refrigerant charge. •

Study Author	State	Existing or New Sample Av Home? Size A		Airflow <350 cfm	Airflow w/in 10% of 400/to	6 Savin		5		
Blasnik et al. 1995a	NV			Existing		Charge			Eneigy	
Blasnik et al. 1995b	CA	1		or New	Sample	correct to	% over §	6 under		
Blasnik et al. 1996	AZ.	Study Author	Sta	té Homes?		míg spec				
Hammarlund et al. 1992	CA	34 B								1000
Hammarlund et al. 1992 Neme et al. 1997	CA MD	Blasnik et al. 1995a	- N\	/ New	30	35%	5%	59%	17%	Est @ 67% combined charge/air flow correction benefits
Palani et al. 1992	n.a.	Blasnik et al. 1995b	- C/	A New	10		- 10		8%	Est @ 67% combined charge/air flow correction benefits
Parker et al. 1997	FL	Blasnik et al. 1996	AZ	Z New	22	18%	4%	78%	21%	Est @ 67% combined charge/air flow correction benefits
Proctor & Pernick 1992	CA	Farzad & O'Neal 199	93 n.a	. n.a.	n.a.			10.1	5%	
Proctor 1991	CA	Farzad & O'Neal 199	93 n.a	i. n.a.	n.a.				17%	Lab test of TXV; 8% loss @20% overchg; 2% loss @20% underchg
Proctor et al. 1995a	CA	Hammarlund et al. 1			12				12%	Lab test of Orifice; 13% loss @20% overchg; 21% loss @ 20% underchg
Rodriguez et al. 1995	n.a.	Hammarlund et al. 1			66	31%	61%	8%	12%	Single family results
Rodriguez et al. 1995	n.a.	Katz 1997	NC/		22	14%	64%	23%	12%	Multi-family results
VEIC/PEG 1997	NJ	Proctor & Pernick 19				44%	33%			Charge measured in 22 systems in 13 homes
		Proctor 1991	C/	-		44%	0070	23%		Results from PG&E Model Energy Communities Program
Average		Proctor et al. 1995a		-			0.004			Fresno homes
		Proctor et al. 1997a			52	11%	33%	56%	4.00	
		Rodriguez et al. 1997							13%	Est @ 67% combined charge/air flow correction benefits
		*			n.a.				5%	Lab test of TXV EER; 5% loss at both 20% overchg & 20% underchg
		Rodriguez et al. 1995	5 n.a	i. n.a.	n.a.				15%	Lab test of Orifice EER; 7% loss @20% overchg, 22% loss @ 20% under
PA		Average				28%	33%	41%	12%	

ENERGY STAR. The simple choice for energy efficiency.

Installation defects in HVAC systems are commonplace

Installation defects in HVAC systems are commonplace

- Airflow is impacted by the installation:
 - Fan-speed setting
 - Components attached to the system (like the filter)
 - Duct system installed
- Refrigerant charge is impacted by the installation:
 - Length of refrigerant line
 - Change in height between indoor and outdoor sections

Lessons learned from the ENERGY STAR Certified Homes program

- + This is an area that deserves a lot of attention.
- + Our partners all benefit from understanding and communicating about this.
- + Requirements that can easily be verified by Raters results in improvement.
- The industry, as a whole, doesn't deliver proper design and installation by default yet.
- Lack of uniform, practical, standards led to inconsistencies between contractors and raters.
- Workflow challenges trumped technical challenges.
- No credit in the HERS/ERI index was a significant obstacle.

Where Do We Go From Here?

- ACCA initiated a proposal that RESNET include an evaluation of HVAC design and installation in the HERS index.
- In Summer 2016, EPA started leading a working group to draft a standard that will accomplish this.
- The working group encompasses a diverse set of stakeholders interested in solving this problem:

Jim Bergman, Measure Quick	Dean Gamble, EPA	Dave Roberts, NREL
Michael Brown, ICF	Dan Granback, Energy Ins.	Mike Serrano, Sonoran Air
Greg Cobb, Apicis Energy	James Jackson, Emerson	Dennis Stroer, CalcsPlus
Wes Davis, ACCA	Rob Minnick, Minnick's Inc.	lain Walker, LBNL
Brett Dillon, IBS Advisors	Brian Mount, Tempo Air	Dan Wildenhaus, ClearResult
Philip Fairey, FSEC	Chris Reynolds, AE	Jon Winkler, NREL

Guiding Principles

- Take a 'carrot' rather than a 'stick' approach.
- Reward incremental improvement by HVAC professionals and Raters.
- Rely upon procedures that:
 - Can be performed by both HVAC professionals and Raters.
 - Favor consistency over breadth.
 - Provide value in and of themselves.

Grading Concept

- Follow the insulation quality-installation model:
 - Grade III: The default. No QI is done. No penalty and no credit.
 - <u>Grade II</u>: Rater reviews key design parameters for accuracy and takes accurate measurements of key installation parameters. The resulting values indicate that the system is not great, but not terrible.
 - <u>Grade I</u>: Rater duplicates the tasks in Grade II, but the resulting values indicate that the system is pretty top-notch.

Status Update

\$EPA

Status Update

- Two major parts:
 - Standard 310: Standard for Grading the Installation of HVAC Systems
 - Brand new standard.
 - Covers all the things that the Rater will do.
 - Standard 301: Standard for the Calculation and Labeling..
 - Updated so that Standard 310 impacts the HERS index.

Status Update

- Process:
 - Complete a Working Draft that the working group approves.
 - SDC 300 subcommittees approve.
 - SDC 300 approves.
 - ACCA reviews Std 310.
 - Public comment period(s).
 - SDC 300 holds a final vote.
 - SMB approves.
 - Standard is submitted to ANSI for review and approval.
 - SMB sets implementation date.
 - HERS software programs get updated, Raters get trained, and then everyone starts using the standard.

Overview of Standard 310 (A work in progress)

\$EPA

Overall Organization of the Standard

• All of the Rater procedures will go into a new standard, Standard 310 - Standard for Grading the Installation of HVAC Systems.

#	Section	Status
1	Purpose	2 nd draft complete
2	Scope	2 nd draft complete
3	Procedure for Evaluating the Design of the Forced-Air System	1 st draft complete
4	Procedure for Evaluating the Total Duct Leakage	1 st draft complete
5	Procedure for Evaluating the Blower Fan Volumetric Airflow	2 nd draft complete
6	Procedure for Evaluating the Blower Fan Watt Draw	2 nd draft complete
7	Procedure for Evaluating the Refrigerant Charge	1 st draft complete
9	Definitions / References / Appendices	Ongoing

Key Terms in the Standard

- <u>Forced-Air System</u> Equipment used to heat or cool a Dwelling or Dwelling Unit that incorporates a Blower Fan to move heated and/or cooled air, combined with supply and/or return distribution ducts.
- <u>Blower Fan</u> The fan inside the equipment of a Forced-Air System that forces the heated and/or cooled air to be distributed within the Dwelling or Dwelling Unit.

Std. 310: Purpose

- The provisions of this document are intended to establish standards for measuring and/or evaluating:
 - The design;
 - The total duct leakage;
 - The Blower Fan volumetric airflow and Blower Fan watt draw in heating, cooling, or fan-only operating mode; and,
 - The refrigerant charge
 - .. of a Residential Forced-Air Heat Pump or Air Conditioning System.

These standards are intended for use by parties evaluating the performance of residential buildings and dwelling units including home energy raters, energy auditors, or code officials.

• Air conditioners paired with furnaces can be tested, but the furnace itself won't earn you extra points in heating mode, even if it's properly installed.

Std. 310: Scope

- This standard is applicable to Residential Forced-Air Heat Pumps and Residential Forced-Air Air Conditioning Systems:
 - In single family dwelling units, and,
 - In dwelling units in multifamily buildings, where each dwelling unit has its own Forced-Air System separate from other dwelling units.

- Overall approach to drafting this section was to:
 - Start with the ENERGY STAR HVAC Design Report,
 - Strip it of references to ENERGY STAR, and,
 - Translate it into standards language.
- Overall, if you're doing ENERGY STAR today, the design documentation collection and review will be very similar for single-family homes.
- Have started to explore what changes to make for multi-family dwelling units.

Step 1. All of the following design information shall be collected for the Forced-Air System under test.

- A design overview
- An overview of the Whole-Dwelling Mechanical Ventilation System design, <u>if</u> such a system is specified in the design
- An overview of the room-by-room heating and cooling loads
- An overview of the air conditioner or heat pump equipment, if specified
- An overview of the furnace equipment, if specified
- An overview of the filter specified for the Residential Forced-Air Heat Pump or Air Conditioning System
- An overview of the duct system design, if specified, for the Residential Forced-Air Heat Pump or Air Conditioning System

Step 2. The design documentation collected shall be reviewed to verify that all required information has been provided.

Step 3. The design documentation collected shall be compared to the home to be rated and the following parameters verified:

- The name of the house plan matches the plan of the home to be rated.
- The elevation(s) and set(s) of architectural options of the home to be rated are encompassed by the design.
- The outdoor design temps. used in the loads are within the limits defined.
- The # of occupants used in the loads are within ± 2 of the home to be rated.
- The conditioned floor area used in the loads are between 100 sq. ft. smaller and 300 sq. ft. larger than the home to be rated.
- The window area used in the loads is 0-60 sq. ft. larger than the home to be rated.
- The predominant SHGC used in the loads is ± 0.1 of the home to be rated.
- At least one orientation associated with the heat gain matches home to be rated.
- The difference btw max and min total heat gain across orientations is ≤ 6 kBtuh.
- The Cooling Sizing % is within the applicable Cooling Sizing Limit.
- The Heating Sizing % is within the applicable Heating Sizing Limit.

Std. 310: Evaluating the Total Duct Leakage

• This short procedure simply directs the Rater to measure the total duct leakage according to Standard 380, evaluate the results, and assign a grade:

Grade	Test Stage	# Returns	Total Leakage Limit
	Rough-In	< 3	4 CFM/100 sqft or 40 CFM
	Rough-In	≥ 3	6 CFM/100 sqft or 60 CFM
	Final	< 3	8 CFM/100 sqft or 80 CFM
	Final	≥ 3	12 CFM/100 sqft or 120 CFM
II	Rough-In	< 3	6 CFM/100 sqft or 60 CFM
	Rough-In	≥ 3	8 CFM/100 sqft or 80 CFM
	Final	< 3	10 CFM/100 sqft or 100 CFM
	Final	≥ 3	14 CFM/100 sqft or 140 CFM
	N/A	N/A	No Limit

- Then, in the procedure to evaluate Blower Fan airflow:
 - Any test procedure can be used if Grade I duct leakage is achieved.
 - A subset of procedures can be used if Grade II duct leakage is achieved.
- **GEPA** Airflow testing not permitted if Grade III duct leakage is achieved.

Overall Organization of the Standard

• All of the Rater procedures will go into a new standard, Standard 310 - Standard for Grading the Installation of HVAC Systems.

	#	Section	Status
\checkmark	1	Purpose	2 nd draft complete
\checkmark	2	Scope	2 nd draft complete
\checkmark	3	Procedure for Evaluating the Design of the Forced-Air System	1 st draft complete
\checkmark	4	Procedure for Evaluating the Total Duct Leakage	1 st draft complete
	5	Procedure for Evaluating the Blower Fan Volumetric Airflow	2 nd draft complete
	6	Procedure for Evaluating the Blower Fan Watt Draw	2 nd draft complete
	7	Procedure for Evaluating the Refrigerant Charge	1 st draft complete
	9	Definitions / References / Appendices	Ongoing

Step 1. Complete prerequisites before evaluating airflow:

- Evaluate the Design of the Forced-Air System
- Verify that installed equipment matches design documentation
- Evaluate the Total Duct Leakage and achieve Grade I or II
- Step 2. Prepare the dwelling and Forced-Air System for testing
- Step 3. Select one of four test methods and evaluate airflow:
 - Pressure Matching
 - Flow Grid
 - Flow Hood
 - OEM Static Pressure Table

#1. Pressure Matching

- 1. Measure static pressure created in supply plenum during operation of HVAC system.
- 2. Turn off HVAC system, connect a fanflowmeter, and block other return air flow paths.
- 3. Turn on flowmeter fan and adjust to achieve same static pressure in supply plenum.
- 4. Determine HVAC airflow by recording airflow of flowmeter fan.

#1. Pressure Matching

Pros	Cons
Accurate: +/- 5%	Can't reach high flows for big systems: needs extrapolation
Uses equipment many Raters already own	If installed at a return – need to account for duct leakage
	Need at least one large low air flow resistance return duct

#2. Flow Grid

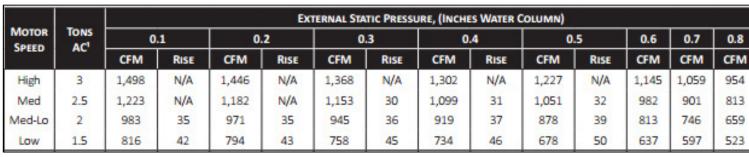
- 1. Measure static pressure created in supply plenum during operation of HVAC system.
- 2. Install calibrated flow grid in filter slot.
- 3. Measure pressure difference using flow grid. Correct pressure using value measure in Step 1.
- 4. Determine HVAC airflow by converting corrected pressure to airflow.

#2. Flow Grid

Pros	Cons
Easy/simple for many systems	Multiple returns are hard to deal with
Can work at higher flows	Need to make sure a good seal is achieved around the plate perimeter
	Less accurate +/- 15%

#3. Flow Hood

- 1. Turn on HVAC system.
- 2. Connect flow hood to return grille.
- 3. Turn on flow hood and allow reading to stabilize.
- 4. Resulting airflow of flow hood determines HVAC airflow.
- May require additional step to account for back-pressure.
- For example, some manufacturers require you to test twice – once with a flap open and again with a flap closed.
- While other manufacturers do this correction automatically without user intervention.

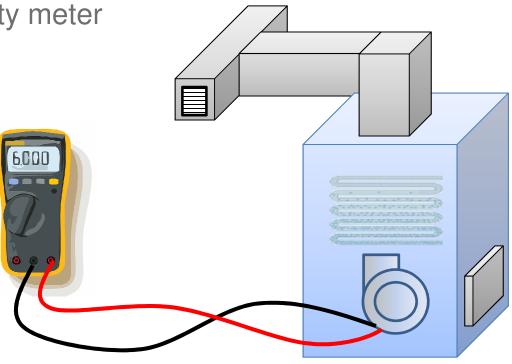


#3. Flow Hood

Pros	Cons
Easy to use	Can be heavy/unwieldy
Flowmeters with high flow resistance less sensitive to placements and flow non-uniformity	Can be sensitive to placement
	Can be expensive
	Will not always fit around air inlet

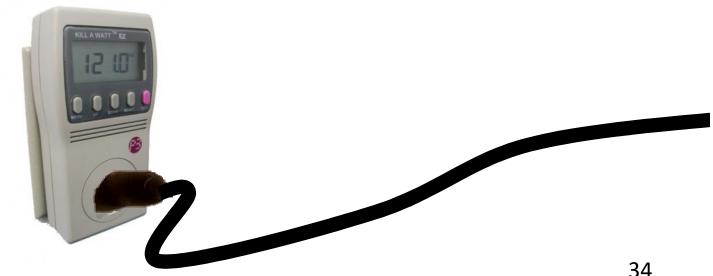
#4. OEM Static Pressure Table

- 1. Turn on HVAC system.
- 2. Measure external static pressure of system's supply side and return side.
- 3. Determine fan-speed setting through visual inspection.
- 4. Using blower table information, look up total external static pressure and fanspeed setting to determine airflow.


#4. OEM Static Pressure Table

Pros	Cons
Requires only pressures to be measured	Rater required to get OEM Blower Table for installed equipment
Works for all flows	Need to coordinate with contractor to drill holes in plenums/equipment
Inexpensive equipment	Ned to place holes in consistent proper location for accurate measurement

Std. 310: Evaluating the Blower Fan Watt Draw


- Two procedures are included:
 - 1. Portable Watt meter for direct measurement
 - 2. Utility meter

Std. 310: Evaluating the Blower Fan Watt Draw **Portable Watt Meter: Direct Measurement**

- 1. Plug in portable watt meter and blower fan equipment into standard electrical receptacle.
- 2. Turn on equipment in required mode.
- 3. Record reading from portable watt meter.

Std. 310: Evaluating the Blower Fan Watt Draw

Portable Watt Meter: Direct Measurement

Pros	Cons
Simple	New equipment needed (Watt meter)
Direct measurement of equipment (accurate)	Not compatible with all equipment (hard-wired)

Std. 310: Evaluating the Blower Fan Watt Draw Utility Meter: Indirect Measurement

- 1. Turn off all circuits except air handler's.
- 2. Turn on equipment in required mode.

For a digital utility meter:

3. Record watt draw from utility meter.

For an analog utility meter:

- **3.** For 90+ seconds, record the number of meter revolutions and time.
- 4. Calculate watt draw.

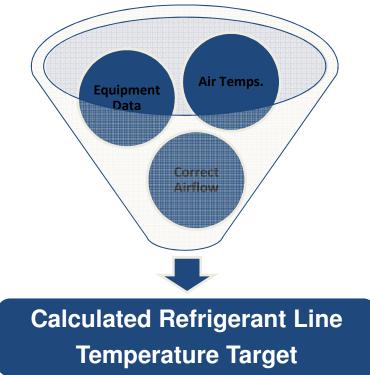
Std. 310: Evaluating the Blower Fan Watt Draw

Utility Meter: Indirect Measurement

Pros	Cons
Works with all equipment	Indirect measurement of equipment
No new equipment needed	More steps required (turning off all other circuits)

Std. 310: Evaluating the Refrigerant Charge Industry-Standard Method:

- Standard charge verification uses refrigerant gauges.
 - Checks superheat and subcooling.
- Burdens / risks for Raters.



ENERGY STAR. The simple choice for energy efficiency.

Std. 310: Evaluating the Refrigerant Charge

Non-Invasive Method:

• Our working group's Jim Bergman has been instrumental in helping develop this procedure.

Std. 310: Evaluating the Refrigerant Charge Non-Invasive Method: Theory / Overview

- Design Temperature Difference (DTD)
 - DTD = Return Air Temp Suction Line Saturation Temp
 - Used for systems with fixed-orifice metering device.
- Condensing Temperature Over Ambient (CTOA)
 - CTOA = Liquid Line Condensing Temp Outdoor Air Temp
 - Used for systems with a TXV
- DTD / CTOA do not change during the life of the system, unless there is an:
 - Airflow restriction,
 - Component failure, or
 - Refrigerant flow restriction.

Std. 310: Evaluating the Refrigerant Charge

Non-Invasive Method: Theory / Overview

- Why are DTD and CTOA consistent between manufacturers?
 - Heat Transfer Rate is based on:

Time	Turbulence	Temperature Difference
(air velocity)	(coil design)	(air and refrigerant)

- All manufacturers design to similar targets:
 - Time: Air can't go too fast or too slow.
 - Turbulence: Similar coil designs, limited by static pressure.
 - Heat Transfer Rate: Same capacities.
 - Temperature Difference: With all other variables consistent, temperature differences (DTD / CTOA) are also consistent.

Std. 310: Evaluating the Refrigerant Charge Non-Invasive Method: Procedure

- 1. Determine key equipment characteristics.
- 2. Measure outdoor air and return air temperatures.
- 3. Calculate target refrigerant line temperatures.
- 4. Measure refrigerant line temperature.
- 5. Compare.

Std. 310: Evaluating the Refrigerant Charge

Non-Invasive Method

Pros	Cons
No refrigerant handling certification	New procedure to learn
Low risk of refrigerant contamination and leaks	Minimum outdoor air temperature required
Less Rater liability	

Overview of Adjustments to Standard 301 (Also a work in progress)

\$EPA

The NIST Study

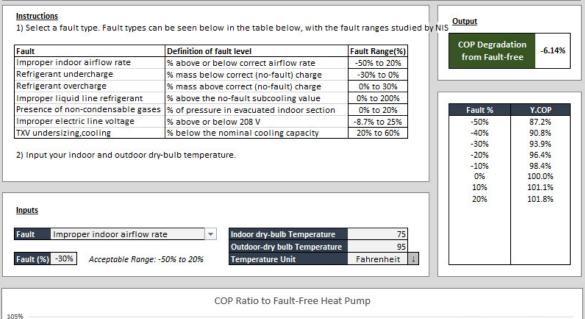
- In September 2014, NIST published an important study that analyzed the sensitivity of installation faults on HVAC performance.
 - Conducted a literature review on HVAC faults.
 - Used laboratory testing to derive equations that correlate design and installation faults with COP impacts.
- HVAC WG intends to use the study as the underpinning of an HVAC grading system in the RESNET standard.

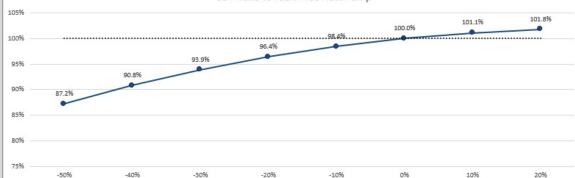
Faults Analyzed in NIST Study

Foult Type	Fault Levels (%)			
Fault Type	Cooling mode	Heating mode		
Heat Pump Sizing (pg. 46)	-20, 25, 50, 75, 100	-20, 25, 50, 75, 100		
Duct Sizing (pg. 48)	80, 100, 125, 150, 175, 200	80, 100, 125, 150, 175, 200		
Duct Leakage (pg. 54)	0, 10, 20, 30, 40, 50	0, 10, 20, 30, 40, 50		
Adjusting Thermostat (pg. 55)	2°F, 4°F	-		
Indoor Coil Airflow (pg. 60)	-36, -15, 7, 28	-36, -15, 7, 28		
Refrigerant Undercharge (pg. 64)	-10, -20, -30	-10, -20, -30		
Refrigerant Overcharge (pg. 66)	10, 20, 30	10, 20, 30		
Excessive Subcooling (pg. 67)	100, 200	-		
Non-Condensable Gases (pg. 68)	10, 20	10, 20		
Electric Voltage (pg. 69)	-8, 8, 25 -8, 8, 25			
TXV Undersizing (pg. 71)	-60, -40, -20	-		

The NIST Study

- Equations created for:
 - Refrigerant-side, and total, cooling and heating capacity
 - Outdoor unit, and total, power
 - COP
- Equation inputs are:
 - Outdoor dry-bulb temperature
 - Indoor dry-bulb temperature
 - Fault type and level




ENERGY STAR. The simple choice for energy efficiency.

Quality Installation (QI) Calculator

Heat Pump COP Degradation Calculator

Literature Review for Airflow Defects

• Reviewed 24 papers & presentations for information about typical airflow defects.

Description	# Systems	Average Airflow (CFM/ton)	Average % Defect	Std Deviation	Author	Date
Description	# Systems			Stu Devlation	Addio	Date
Field measurements	4,168	281	@350: 20%	Not defined	Mowris, R.J., et. al.	2004
*****	-		@400: 30%		· ·	
Summary of studies	n/a	327	@350: 7%	~22%	Neme, et. al.	1999
Summary of Studies	in a	JZ7	@400: 18%	2270	Neme, et. al.	1333
r :	20	244	@350: 2%	4.00/	Ducester	1007
Field measurements	28	344	@400: 14%	16%	Proctor	1997
			@350: 0%			
Field measurements 42	42	350	@400: 13%	Not defined	Titus	2006
			@350: 9%	.		
Field measurements	8	319	@400: 20%	38% had defects ≥ 25%	Blasnik, et. al.	1995
			@350: 17%	_	-	
Field measurements	Unknown	289	@400: 28%	Not defined	Neal, referencing Parker 1997 study	1998
			@350: 2%			
Field measurements	Unknown	344	@400: 14%	Not defined	Neal, referencing Proctor 1992 study	1998
			@350: 14%			
Assumption	n/a	300	-	Not defined	Wilcox	2007
			@400: 25%			
Assumption n/a	n/a	n/a	@350: 15%	Not defined	Walker	1998
F	7 -	7-	@400: 26%			

Literature Review for Refrigerant Charge Defects

• Reviewed 24 papers & presentations for information about typical refrigerant charge defects.

Description	# Systems	Average Defect (% Dev. from Correct Charge)	Worst-Case/Bad Defect (% Dev. From Correct Charge)	Std Deviation	Author	Date
Field measurements	55,462	14%	90%	Not defined	Proctor	2003
Field measurements	4,168	16%	n/a	Not defined	Mowris, R.J., et. al.	2004
Field measurements	405	15%	48%	Not defined	Downey and Proctor	2002
Field measurements	28	16% 11% lineset var. < 10 ft 33% lineset var. ≥ 10 ft	45%	13%	Proctor	1997
Assumption	n/a	15%	30%	Not defined	Walker, et. al.	Unknown
Assumption	n/a	15%	30%	Not defined	Walker, et. al.	1998

Literature Review Summary

- Typical worst-case, or Grade III, defect would be:
 - -25% airflow relative to design
 - -25% refrigerant charge relative to design
- The HERS Reference Home would be configured with these defect levels.
- Rated homes that are not evaluated would be configured with the same defects.

Potential HERS Impact

House Parameters Consistent Across CZ's

Parameter	Value
Number of Stories	Two
Conditioned Floor Area per Floor (ft ²)	1,200
Total Conditioned Floor Area (ft ²)	2,400
Perimeter (ft)	30 x 40
Ceiling Height (ft)	8.5
Bedrooms	4
Window Area & Distribution	15%, Even
Exterior Door Quantity & Total Area (ft ²)	2 Doors, 42 ft ²
Space Heat., Cool. & DHW	Gas Furnace, AC, Gas DHW

House Parameters Varied Across CZ's

Parameter	CZ 2	CZ 4	CZ 6	
Location	Tampa, FL	St. Louis, MO	Burlington, VT	
Foundation Type	Slab	Unconditioned Basement		

Efficiency Tiers

Efficiency Tiers
HERS Reference Home
ENERGY STAR v3
ENERGY STAR v3.1

ENERGY STAR. The simple choice for energy efficiency.

Potential HERS Impact

Defect Levels

Parameter	Scenario 1	Scenario 2	Scenario 3	Scenario 4
Airflow Defect	-25%	0%	-25%	0%
Refrigerant Charge Defect	-25%	-25%	0%	0%

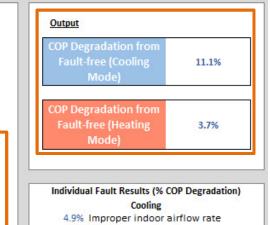
Potential HERS Impact

COP impacts calculated using NIST calculator

Heat Pump COP Degradation Calculator

Instructions

1) Select a fault type. Fault types can be seen in the table below, with the fault ranges studied by NIST:


Fault	Definition of fault level	Fault Range(%)
Improper indoor airflow rate	% above or below correct airflow rate	-50% to 20%
Refrigerant undercharge	% mass below correct (no-fault) charge	-30% to 0%
Refrigerant overcharge	% mass above correct (no-fault) charge	0% to 30%

2) Input your location to determine Climate Zone indoor and outdoor dry-bulb temperature.

State	MO	1
Location	St Louis Spirit O	1
Cooling Design Temp	90	
Heating Design Temp	11	
IECC CZ	4	

3) Input the equipment relevant fault and associated Fault % (within acceptable ranges listed)

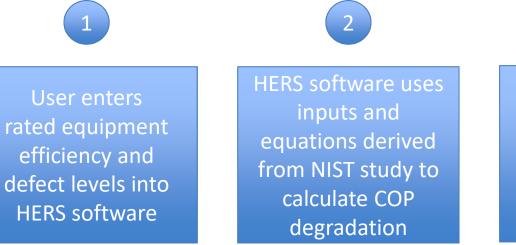
L	Fault 1	Improper indoor airflow rate	1	Fault (%)	-25%	Acceptable Range: -50% to 20%
H	Fault 2	Refrigerant undercharge	1	Fault (%)	-25%	Acceptable Range: -30% to 0%

6.8% Refrigerant undercharge

Individual Fault Results (% COP Degradation) Heating

4.1% Improper indoor airflow rate

-0.1% Refrigerant undercharge


Potential HERS Impact

			Defect Level							
			-25% Airflow -25% Charge		0% Airflow -25% Charge		-25% Airflow 0% Charge		0% Airflow 0% Charge	
Heat Fuel	Efficiency		SEER x	HSPF x	SEER x	HSPF x	SEER x	HSPF x	SEER x	HSPF x
Туре	Tier	CZ	COP Impact	COP Impact	COP Impact	COP Impact	COP Impact	COP Impact	COP Impact	COP Impact
Gas	HERS Ref	CZ2	11.5	-	12.1	-	12.4	-	13.0	-
		CZ4	11.6	-	12.1	-	12.4	-	13.0	-
		CZ6	11.6	-	12.1	-	12.4	-	13.0	-
	ESv3	CZ2	12.9	-	13.5	-	13.8	-	14.5	-
		CZ4	11.6	-	12.1	-	12.4	-	13.0	-
		CZ6	11.6	-	12.1	-	12.4	-	13.0	-
	ESv3.1	CZ2	13.3	-	14.0	-	14.3	-	15.0	-
		CZ4	11.6	-	12.1	-	12.4	-	13.0	-
		CZ6	11.6	-	12.1	-	12.4	-	13.0	-
Electric	HERS Ref	CZ2	11.5	6.6	12.1	7.3	12.4	6.9	13.0	7.7
		CZ4	11.6	7.4	12.1	7.7	12.4	7.4	13.0	7.7
		CZ6	11.6	7.9	12.1	7.9	12.4	7.7	13.0	7.7
	ESv3	CZ2	12.9	7.0	13.5	7.8	13.8	7.3	14.5	8.2
		CZ4	12.9	8.2	13.5	8.5	13.8	8.2	14.5	8.5
		CZ6	12.9	9.7	13.5	9.7	13.8	9.5	14.5	9.5
	ESv3.1	CZ2	13.3	7.0	14.0	7.8	14.3	7.3	15.0	8.2
		CZ4	13.3	8.2	14.0	8.5	14.3	8.2	15.0	8.5
		CZ6	13.3	9.7	14.0	9.7	14.3	9.5	15.0	9.5

ENERGY STAR. The simple choice for energy efficiency.

Potential HERS Impact

3

HERS software models equipment with COP degradation in lieu of rated efficiency

Potential HERS Impact

				Point Potential			
Heat Fuel Type	Efficiency Tier	CZ	-25% Airflow -25% Charge	0% Airflow -25% Charge	-25% Airflow 0% Charge	0% Airflow 0% Charge	REM 15.3
Gas	HERS Ref	CZ2	105	103	101	99	6
		CZ4	100	99	98	97	3
		CZ6	100	99	99	99	1
	ESv3	CZ2	78	76	77	74	4
		CZ4	80	79	79	78	2
		CZ6	75	75	75	74	1
	ESv3.1	CZ2	67	66	66	64	3
		CZ4	64	63	63	62	2
		CZ6	60	60	60	59	1
Electric	HERS Ref	CZ2	106	103	102	99	7
		CZ4	100	98	99	97	3
		CZ6	97	97	98	97	0
	ESv3	CZ2	79	77	77	74	5
		CZ4	83	82	82	82	1
		CZ6	78	78	78	79	-1
	ESv3.1	CZ2	69	67	67	65	4
		CZ4	67	66	66	65	2
		CZ6	64	63	63	63	1

ENERGY STAR. The simple choice for energy efficiency.

Potential HERS Impact for 25% Defect Level Across Software

			Point Potential					
Heat Fuel Type	Efficiency Tier	CZ	REM 15.3	Ekotrope 2.1	EG v5	Delta		
Gas	HERS Ref	CZ2	6	6	6	0		
		CZ4	3	2	2	1		
		CZ6	1	0	0	1		
	ESv3	CZ2	4	3	5	2		
		CZ4	2	1	2	1		
		CZ6	1	0	0	1		
	ESv3.1	CZ2	3	3	4	1		
		CZ4	2	1	1	1		
		CZ6	1	0	1	1		
Electric	HERS Ref	CZ2	7	6	6	1		
		CZ4	3	3	3	0		
		CZ6	0	-1	0	1		
	ESv3	CZ2	5	3	6	3		
		CZ4	1	0	3	3		
		CZ6	-1	-3	0	3		
	ESv3.1	CZ2	4	3	5	2		
		CZ4	2	1	2	1		
		CZ6	1	0	0	1		

Potential HERS Impact Summary

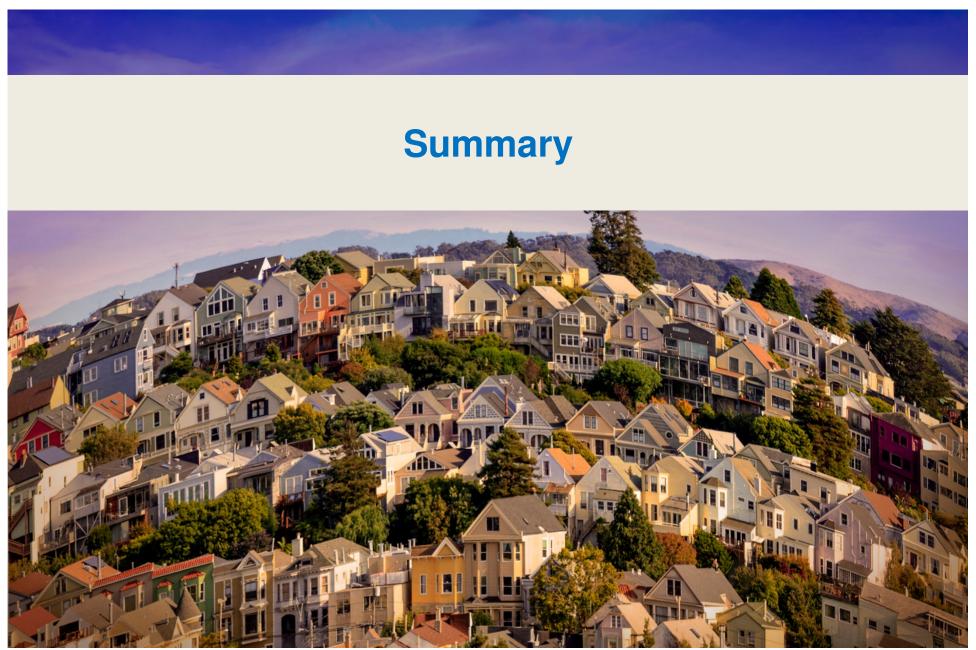
- For homes where the HVAC design and installation <u>is not</u> assessed, score should be about the same as today.
- For homes where the HVAC design and installation is assessed, impact will be:
 - Dependent on climate
 - Dependent on how efficient the rest of the house is
 - Dependent on how well the system is designed and installed.
- While this is still subject to refinement, we predict the following rough impacts for an ENERGY STAR home:
 - Up to ~3 points in hot climates
 - Up to ~2 points in mixed climates
 - Up to ~1 point in cold climates

Alternative Compliance Paths

\$EPA

Alternative Compliance Paths

- Primary goal of working group is to define a standard for Raters to assess HVAC design and installation.
- With HVAC design and installation, there may be a reason to include alternative compliance paths in addition to the Rater-verification path.
- Two possible pathways:
 - On-board diagnostics that directly provide data to Raters.
 - Third-party verifiers that collect and provide data in lieu of Raters, with oversight outside of RESNET.


On-Board Diagnostics

- Key characteristic is that parameters are assessed without human intervention.
- For example, an on-board diagnostic system might assess any or all of the following:
 - Actual system airflow
 - Superheat / subcooling or equivalent
 - Fan wattage
- These values would be accessible to the Rater during the rating process.
- On-board diagnostics would have to meet or exceed the defined accuracy limit of Rater-verified tasks.
- RESNET would rely upon manufacturer claims of accuracy for the short-term.
- RESNET would maintain a list of equipment manufacturer and model numbers that incorporate on-board diagnostics.
- Because Raters will be verifying manufacturer and model numbers, this information could be used as part of a quality assurance initiative.

Third-Party Verifiers

- Key characteristic is that someone other than a Rater is permitted to collect field data and provide it to the Rater.
- An MOU would likely need to be signed between RESNET and the oversight organization(s) for these alternative verifiers. The oversight organization would need to:
 - Certify/credential the verifiers
 - Provide oversight to their work
 - Perhaps would use the same procedures as Raters to collect the data
 - May need to collect and review the design documentation
 - Preferably would provide data to Raters in a standard format
- This is similar, but more robust, than the current oversight model offered by ACCA and Advanced Energy in support of the ENERGY STAR Homes program.

Summary

- We've made a lot of progress since last year.
- 2018 will be a key year for moving this towards completion.
- Hopefully when we see you next year, we'll have a final or nearly final standard.
- If you're doing ENERGY STAR today, this new standard will look very familiar to you. The key difference will be the field tests.
- Why wait to get familiar with those?

Sample Equipment List from CEC

			Retail		Airflow Range
Product Type	Manufacturer	Model #	Cost	Accuracy	(CFM)
Pressure Matching	The Energy Conservatory	Minneapolis Duct Blaster Series B	\$2,595	±3 % of mv	2.4 - 1,500
Pressure Matching	Retrotec	Model 341 DucTester	\$1,745	±3 % of mv	10 - 810
Manometer	The Energy Conservatory	DG-500	\$985	Greater of ±1 % of mv or ±0.15 Pa	N/A
Manometer	Retrotec	DM32	\$1,150	Greater of ±1 % of mv or ±0.25 Pa	N/A
Static Pressure Probe	AAB	PRB-KIT	\$25	N/A	N/A
Static Pressure Probe	Fieldpiece	ASP2	\$19	N/A	N/A
Flow Grid	The Energy Conservatory	Trueflow Air Handler Flow Meter	\$850	±7 % of mv when used with a 1% pressure gauge	365 - 2,100
Flow Hood	Testo	420 Flow Hood Kit	\$1,975	±3 % of mv + 7 CFM	50 - 2,000
Flow Hood	Alnor (TSI)	EBT730	\$3,272	±3 % of mv + 7 CFM	25 - 2,500
Flow Hood	Kanomax	Capture Hood Model 6710 Version 2	\$2 <i>,</i> 480	±3 % of mv ± 5 CFM	24 - 2531
Flow Hood	Kanomax	TABmaster Model 6715	\$3,280	±3 % of mv ± 5 CFM	24 - 2531

